
C++ What is OOP?

OOP stands for Object-Oriented Programming.

Procedural programming is about writing procedures or functions that

perform operations on the data, while object-oriented programming is about
creating objects that contain both data and functions.

Object-oriented programming has several advantages over procedural
programming:

• OOP is faster and easier to execute
• OOP provides a clear structure for the programs
• OOP helps to keep the C++ code DRY "Don't Repeat Yourself", and

makes the code easier to maintain, modify and debug

• OOP makes it possible to create full reusable applications with less

code and shorter development time

Tip: The "Don't Repeat Yourself" (DRY) principle is about reducing the
repetition of code. You should extract out the codes that are common for the

application, and place them at a single place and reuse them instead of
repeating it.

C++ What are Classes and Objects?

Classes and objects are the two main aspects of object-oriented
programming.

Look at the following illustration to see the difference between class and
objects:

class

Fruit

objects

Apple

Banana

Mango

Another example:

class

Car

objects

Volvo

Audi

Toyota

So, a class is a template for objects, and an object is an instance of a class.

When the individual objects are created, they inherit all the variables and
functions from the class.

C++ Classes/Objects

C++ is an object-oriented programming language.

Everything in C++ is associated with classes and objects, along with its

attributes and methods. For example: in real life, a car is an object. The car
has attributes, such as weight and color, and methods, such as drive and
brake.

Attributes and methods are basically variables and functions that belongs

to the class. These are often referred to as "class members".

A class is a user-defined data type that we can use in our program, and it
works as an object constructor, or a "blueprint" for creating objects.

Create a Class

To create a class, use the class keyword:

Example

Create a class called "MyClass":

class MyClass { // The class

 public: // Access specifier

 int myNum; // Attribute (int variable)

 string myString; // Attribute (string variable)

};

Example explained

• The class keyword is used to create a class called MyClass.

• The public keyword is an access specifier, which specifies that
members (attributes and methods) of the class are accessible from
outside the class. You will learn more about access specifiers later.

• Inside the class, there is an integer variable myNum and a string

variable myString. When variables are declared within a class, they are
called attributes.

• At last, end the class definition with a semicolon ;.

Create an Object

In C++, an object is created from a class. We have already created the class

named MyClass, so now we can use this to create objects.

To create an object of MyClass, specify the class name, followed by the object
name.

To access the class attributes (myNum and myString), use the dot syntax (.) on
the object:

#include <iostream>

#include <string>

using namespace std;

https://www.w3schools.com/cpp/cpp_access_specifiers.asp

class MyClass { // The class

 public: // Access specifier

 int myNum; // Attribute (int variable)

 string myString; // Attribute (string variable)

};

int main() {

 MyClass myObj; // Create an object of MyClass

 // Access attributes and set values

 myObj.myNum = 15;

 myObj.myString = "Some text";

 // Print values

 cout << myObj.myNum << "\n";

 cout << myObj.myString;

 return 0;

}

C++ Class Methods

Class Methods

Methods are functions that belongs to the class.

There are two ways to define functions that belongs to a class:

• Inside class definition

• Outside class definition

In the following example, we define a function inside the class, and we name

it "myMethod".

Note: You access methods just like you access attributes; by creating an

object of the class and using the dot syntax (.):

#include <iostream>

using namespace std;

class MyClass { // The class

 public: // Access specifier

 void myMethod() { // Method/function

 cout << "Hello World!";

 }

};

int main() {

 MyClass myObj; // Create an object of MyClass

 myObj.myMethod(); // Call the method

 return 0;

}

To define a function outside the class definition, you have to declare it inside
the class and then define it outside of the class. This is done by specifiying

the name of the class, followed the scope resolution :: operator, followed by
the name of the function:

Outside Example

class MyClass { // The class

 public: // Access specifier
 void myMethod(); // Method/function declaration

};

// Method/function definition outside the class

void MyClass::myMethod() {

 cout << "Hello World!";

}

int main() {

 MyClass myObj; // Create an object of MyClass

 myObj.myMethod(); // Call the method

 return 0;

}

C++ Constructors

❮ PreviousNext ❯

Constructors

A constructor in C++ is a special method that is automatically called when
an object of a class is created.

To create a constructor, use the same name as the class, followed by

parentheses ():

Example

class MyClass { // The class

 public: // Access specifier

 MyClass() { // Constructor
 cout << "Hello World!";

 }
};

int main() {

 MyClass myObj; // Create an object of MyClass (this will call the
constructor)

 return 0;

}

Note: The constructor has the same name as the class, it is always public,
and it does not have any return value.

Constructor Parameters

https://www.w3schools.com/cpp/cpp_class_methods.asp
https://www.w3schools.com/cpp/cpp_access_specifiers.asp

Constructors can also take parameters (just like regular functions), which
can be useful for setting initial values for attributes.

The following class have brand, model and year attributes, and a constructor
with different parameters. Inside the constructor we set the attributes equal

to the constructor parameters (brand=x, etc). When we call the constructor
(by creating an object of the class), we pass parameters to the constructor,
which will set the value of the corresponding attributes to the same:

Example

class Car { // The class

 public: // Access specifier

 string brand; // Attribute

 string model; // Attribute

 int year; // Attribute

 Car(string x, string y, int z) { // Constructor with parameters

 brand = x;
 model = y;

 year = z;
 }

};

int main() {
 // Create Car objects and call the constructor with different values

 Car carObj1("BMW", "X5", 1999);

 Car carObj2("Ford", "Mustang", 1969);

 // Print values

 cout << carObj1.brand << " " << carObj1.model << " " <<

carObj1.year << "\n";
 cout << carObj2.brand << " " << carObj2.model << " " <<

carObj2.year << "\n";
 return 0;

}

Just like functions, constructors can also be defined outside the class. First,
declare the constructor inside the class, and then define it outside of the
class by specifying the name of the class, followed by the scope

resolution :: operator, followed by the name of the constructor (which is the
same as the class):

Example

class Car { // The class

 public: // Access specifier

 string brand; // Attribute

 string model; // Attribute

 int year; // Attribute

 Car(string x, string y, int z); // Constructor declaration

};

// Constructor definition outside the class

Car::Car(string x, string y, int z) {

 brand = x;

 model = y;

 year = z;

}

int main() {

 // Create Car objects and call the constructor with different values

 Car carObj1("BMW", "X5", 1999);

 Car carObj2("Ford", "Mustang", 1969);

 // Print values

 cout << carObj1.brand << " " << carObj1.model << " " <<

carObj1.year << "\n";
 cout << carObj2.brand << " " << carObj2.model << " " <<

carObj2.year << "\n";

 return 0;
}

C++ Access Specifiers

Access Specifiers

By now, you are quite familiar with the public keyword that appears in all of
our class examples:

Example

class MyClass { // The class

 public: // Access specifier

 // class members goes here

};

The public keyword is an access specifier. Access specifiers define how the

members (attributes and methods) of a class can be accessed. In the
example above, the members are public - which means that they can be
accessed and modified from outside the code.

However, what if we want members to be private and hidden from the
outside world?

In C++, there are three access specifiers:

• public - members are accessible from outside the class

• private - members cannot be accessed (or viewed) from outside the

class
• protected - members cannot be accessed from outside the class,

however, they can be accessed in inherited classes. You will learn more

about Inheritance later.

In the following example, we demonstrate the differences

between public and private members:

Example

class MyClass {

 public: // Public access specifier
 int x; // Public attribute

 private: // Private access specifier
 int y; // Private attribute

};

int main() {

 MyClass myObj;

 myObj.x = 25; // Allowed (public)

 myObj.y = 50; // Not allowed (private)
 return 0;

}

If you try to access a private member, an error occurs:

error: y is private

Note: It is possible to access private members of a class using a public
method inside the same class. See the next chapter (Encapsulation) on how
to do this.

Tip: It is considered good practice to declare your class attributes as private
(as often as you can). This will reduce the possibility of yourself (or others)

to mess up the code. This is also the main ingredient of

https://www.w3schools.com/cpp/cpp_inheritance.asp
https://www.w3schools.com/cpp/cpp_encapsulation.asp

the Encapsulation concept, which you will learn more about in the next
chapter.

Note: By default, all members of a class are private if you don't specify an
access specifier:

Example

class MyClass {

 int x; // Private attribute

 int y; // Private attribute
};

C++ Encapsulation

Encapsulation

The meaning of Encapsulation, is to make sure that "sensitive" data is
hidden from users. To achieve this, you must declare class

variables/attributes as private (cannot be accessed from outside the class). If
you want others to read or modify the value of a private member, you can
provide public get and set methods.

Access Private Members

To access a private attribute, use public "get" and "set" methods:

Example

#include <iostream>
using namespace std;

class Employee {

https://www.w3schools.com/cpp/cpp_encapsulation.asp

 private:

 // Private attribute

 int salary;

 public:

 // Setter
 void setSalary(int s) {

 salary = s;

 }

 // Getter

 int getSalary() {

 return salary;

 }

};

int main() {

 Employee myObj;

 myObj.setSalary(50000);

 cout << myObj.getSalary();

 return 0;
}

Example explained

The salary attribute is private, which have restricted access.

The public setSalary() method takes a parameter (s) and assigns it to

the salary attribute (salary = s).

The public getSalary() method returns the value of the

private salary attribute.

Inside main(), we create an object of the Employee class. Now we can use

the setSalary() method to set the value of the private attribute to 50000. Then

we call the getSalary() method on the object to return the value.

Why Encapsulation?

• It is considered good practice to declare your class attributes as

private (as often as you can). Encapsulation ensures better control of
your data, because you (or others) can change one part of the code
without affecting other parts

• Increased security of data

C++ Inheritance

Inheritance

In C++, it is possible to inherit attributes and methods from one class to
another. We group the "inheritance concept" into two categories:

• derived class (child) - the class that inherits from another class

• base class (parent) - the class being inherited from

To inherit from a class, use the : symbol.

In the example below, the Car class (child) inherits the attributes and

methods from the Vehicle class (parent):

Example

// Base class
class Vehicle {

 public:

 string brand = "Ford";

 void honk() {
 cout << "Tuut, tuut! \n" ;

 }
};

// Derived class

class Car: public Vehicle {

 public:

 string model = "Mustang";

};

int main() {

 Car myCar;

 myCar.honk();

 cout << myCar.brand + " " + myCar.model;

 return 0;
}

